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Abstract 

We obtain the Hamilton operator of the Calogero-Moser quantum system in an external quadratic 
potential by conjugating the radial part for the action of SO(n) by conjugacy of the Hamilton operator 
of the quantum harmonic oscillator on the Euclidean vector space of real symmetric matrices. Then, 
with Mehler’s formula, we derive the propagator of the problem. We also investigate some schemes 
to change the interaction constant. For two-particle systems, we obtain explicit formulae, whereas for 
many-particle systems, we reduce the computation of the propagator to finding a definite integral. 
We give also the short time approximation, the energy levels and the trace of the propagation 
operator. 0 1998 Published by Elsevier Science B.V. 
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1. Introduction 

Few quantum mechanics problems are exactly solvable. Except some one-body problems, 
the only known solvable problems are those the classical-mechanics counterparts of which 
are completely integrable: Toda lattices and Calogerr+Moser systems [2] or similar ones, 
such as Sutherland’s [ 19,201. 

The general idea of this paper comes from a description of the rational Calogero model 
with an external quadratic potential as a projection of a harmonic motion in a matrix space. 
This idea has been used first for the explicit integration of the equations of motion in the 
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classical case in papers by Olshaneski and Perelomov [ 13,141. Kazdhan et al. [ 101 proved 
that this projection method coincides with the Marsden-Weinstein symplectic reduction 
scheme (see also [17] and FranCoise [4], who has solved a conjecture made by Gallavoti 
and Marchioro [6]). 

This idea is also very useful in the quantum case and sometimes gives the integral repre- 
sentations for wave functions and propagators (Green functions). This is emphasized in the 
review paper of Olshaneski and Perelomov [ 161, where an analogue of Theorem 4 of this 
paper is given for more general cases. 

Olshaneski and Perelomov [ 151, by generalizing some results of Berezin [ 11, have noticed 
that the radial part of the Laplace-Beltrami operator of symmetric spaces is conjugated to 
the quantum Hamilton operator of the Sutherland system, which describes the motion of 
identical particles on a circle or a branch of a hyperbola with a pairwise interaction potential 
inversely proportional to the square of their mutual distance. They also observed that the 
problem on the line (Calogero’s problem) was obtained as a limit when the curvature of the 
symmetric space goes to zero. 

In this paper, we consider the problem on the line, starting not from a symmetric space, 
but from the space of real symmetric matrices, which can be understood as the limit of the 
symmetric space U(n)/,SO(n) when its curvature goes to zero. Thus, taking the radial part 
of the Laplace-Beltrami operator for the action of SO(n), we directly obtain the problem 
on the line. This scheme allows us to add an external quadratic potential before reduction, 
that we find again in the reduced one. 

The problem thus obtained is slightly different from the one Calogero has studied [2], 
where the quadratic potential is pairwise rather than external. 

In Section 2, we fix the notations in use along this paper. In Section 3, we give the radial 
reduction leading to Calogero’s problem. Section 4 is devoted to the calculation of the 
propagator giving the time evolution in terms of the initial wave function, by use of methods 
analogous to the one given by Debiard and Gaveau [3]. In Section 5, we give the short time 
approximation of the propagator by the stationary phase method. This approximation is not 
exact, but becomes so when the interaction potential vanishes, which allows to compute the 
Fourier transform of the delta function of adjoint orbits in u(n). Section 6 shows how other 
constants in the l/r* pairwise potential may be obtained and the corresponding propagators 
are computed therein. The obtention of systems by reduction allows us to determine the 
eigenvalues of the Hamilton operator, and then to compute the trace of the propagation 
operator, which is done in Section 7. The results we obtain deal with the propagation in a 
Weyl chamber. In Section 8, we derive the physical propagation according to the statistics 
the particles obey to. 

2. Notations 

The space of n x n real symmetric matrices will be denoted by V, and will be provided 
with the scalar product: (X, Y) = tr(XY). The group SO(n) operates on V by conjugacy: 
(g, X) H gXg_’ (g E SO(n), X E V) and preserves the scalar product on V. 
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hl 

A= 

is transversal to the action of S 0 (n) and orthogonal to the orbits since the tangent space to 
the orbit through H E A is {[Z, H] = ZH - HZ]Z skewsymmetric}, the tangent space to 
A is the space of diagonal matrices H’ and 

(H’, [Z, H]) = tr(H’ZH - H’HZ) = 0 because HH’ = H’H. 

We denote by 

M={ (” . . . *1) , with an even number of - 1 

the isotropy subgroup in S 0 (n) of matrices in A. 
We provide SO(n) with the bi-invariant metric induced by the invariant scalar product 

on the Lie-algebra SO(n) : (X, Y) H -tr(XY). 
We will denote by dg and dg the corresponding invariant measures on SO(n) and 

SO(n)/M, respectively. 
We will also use the density function 6, which is the ratio between the Riemannian 

measure induced by V on an orbit and the measure dg on SO(n)/M. The function 6 is 
radial (SO(n)-invariant). 

Let us compute this function 6. We remark that the matrices 

(1 and - 1 being the coefficients of indices (p, q) and (q, p)), form an orthonormal basis of 
,SO(n) = &SO(n) = T,(SO(n)/M) (o denoting the origin of SO(n)/M). Their images 
tangent at 

H= EA 

to the orbit through H are 

4 - h, [A,,, HI = A 
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pairwise orthogonal, of norms (h4 - h,), which proves that 

G(gHg-‘) = fl(!Q - hp), g E SO(n), H E A. 
P’9 

The Laplace-Beltrami operator L v on V induces its radial part AL v on A, given by [9]: 

AL” = J-‘/2Ln$/2 _ &-‘12,5n($/2) 

where LA = c, i!I’/ahi is the Laplace-Beltrami operator on A provided with the metric 
induced by the metric of V. 

3. Calogero operator 

It has been noticed in [l] that operators of Calogero-Moser-Sutherland type are obtained 
by conjugation of the radial part of the Laplace-Beltrami operator on a symmetric space 
by the square root of the density function. Let us make the computation in the case at 
hand: 

$12A,lVJ-r/2 = LA _ A-1/2 L&/2) = F J$ - J-‘/z c z!!$ 
r r r 

But 

aN2 i as 1 6 6 --=- 
- = 2stP x 

~- 
6 ah 26’12 c r p<r hr - hP q>r hq - hr 

= ;q --_!-- 
P_#r hr - hP 

and 

a281/2 i aC2 c 1 -_=-- ___ 
ah: 2 ah, Pfr hr - hP 

-;8’/2c l 
PZr (hr - hp)’ 

2 

_ $5/2c l 
PZr (hr - hp)’ 

1 1 
+c (hr - hp)’ PZr 4+r,pzq (hr - hp)(hr - hq) 

I 

_ $3’2~ l 
Pi,. (hr - hpj2 

1 
+c 
pfrqjr,pfq chr - hp)(hr - h4) 1 ’ 
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But the second sum inside the brackets is zero, since: 

3. c 
1 

P+. & P+4 (hr - V(hr - h4) > > 

= [ 

1 1 
= 

P#‘4#‘3P#4 
(h, - hp)(h, - h4) + (h&J - h4)(hp - A,) 

1 

+ (hq - hp)(hq - hr) 1 
c [ hp - hq - (hr - hq) 1 

= 

p#r.4#r3p#4 (hr - hp)(hr - hq)(hp - hq) + (hq - hp)(hq - hr) 1 
hp - hr 1 

= 
(hr - hp)(hr - hq)(hp - hq) + (hq - hp)(hq - hr) 1 

= 0. 
Therefore 

If we apply the same scheme to the SO(n)-invariant operator on V: 

-;L” + ;,,x,i2 (X E V), 

which describes the quantum mechanical harmonic oscillator, we get, after conjugating its 
radial part, the Calogero operator on A with an external quadratic potential: 

+;Eh: (hl < h2 < ... < h,). 
r 

4. Propagator 

4.1. General case 

The propagator of the N-dimensional harmonic oscillator is known. It is given by Mehler’s 
formula (see [S]): 

~~ (x, ~1) = (_i)Nate-iNn/4 zn y 

I . I 

-N/2 
,iW(X,X’) 
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with 

W(X, X’) = &[cos(WllXll2 + llX’l12) - 2(X, WI 

and 

at = 0 if t EIO, n/U, 1 if t Eln/h, 2n/h[, 2 if t ~]2n/A, 3n/A[, . . . 

Let $0 be an initial wave function of the form I,+O = 8-1/2f~ where fo : V + Q= is a 
radial function. Then $0 E L2(V) iff foIn E L2(A) since 

s I +00(x) I2 dX=/WO 1 I IlroWg-‘1 I2 di?dH 
V A SWn)IM 

= s s di x I foW I2 dH 
SO(n)/M A 

(see [9] for this change of variables. g E SO(n) is a representative of 2). 
The wave function at time t is of the form qt = 8-1/2f, where fr is radial, and f is the 

solution of SchrGdinger equation i(af/at) = @f with initial wave function fo. But for all 
H E A: 

~-1’2W)hW> 
= @t(H) = 

s 
&(H, X’)qo(X’) dX’ 

V 

-N/2 
= (_i)Nate-iNn/4 

s 
,iW(H,X’)B-1/2(X’)fO(XI) dx’, n(n + 1) 

where N = dim V = ~ 
2 

V 

= (_i)(n(“+l)/2)“,e-in(n+l)n/8 zaSin 

I I 

-n(n+1)/4 

h 

X 
s 

S(H’)S-1/2(H’)f~(H’) 
s 

eiWW,gH’g-‘) dj dHf 

A SO(n)IM 

X 
s 

S”2(H’)fo(H’) 
s 

eiWW.gH’g-‘) dg dHf 

A SO(n) 

(since M has cardinal 2*-l). 
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Hence the propagation of the restriction of f to A: 

Theorem 1. The solution of Schriidinger equation i(af/at) = .@f with initial condition 
&o = fo E L2(A) is given by f,(H) = 1, k,(H, H’)fo(H’) dH’ where 

k(H, H’) 

= &C-i) 
(n(n+l)/2)cqe-in(n+l)rr/8 zn e 

I . I 

-(n(n+l)/4) 

h 
61’2(H)6”2(H’) 

ih cos ht 
~(llHl12 + IIH’l12) ) 1 exp (d&W. gff’g-‘)) dg. 

SO(n) 

Remark. If h = 0, the propagator is 

k(H, H’) = &e -in(n+1)k/s(2nt)-n(n+l)/4gl/2(H)~1/2(H’) 

x e~~/~~~~ll~l12+ll~‘Ilz~ 

s (’ 
exp -;(H, gH’g-‘) 

> 
SO(n) 

dg. 

In order to compute (H, g H'g- ’ ), it is sufficient to know the diagonal entries of g H'g-' , 
given by 

W’g-’ ep, e,) = (H’g-‘ep, g-‘e,,) = xh:(gP1),,,er7 z(gC’)r,er 
r 

Therefore (H, g H’g-‘) = C,, (g,,)2h,hb. 

Remark. The propagator is (2x/h)-periodic if n is congruent to 0 or 3 modulo 4, (4n/h)- 
periodic in the remaining cases. This property comes from the fact that the system is the 
reduction of a in(n + 1)-dimensional harmonic oscillator. The classical system is (2x/h)- 
periodic (Zoll system), for the same reason. 

4.2. The case n = 2 (two-particle systems) 

In the case n = 2, we show that the integral in the expression of the propagator can be 
expressed in terms of a Bessel function. 

We parametrize SO (2) in the usual way: 

g= 
( 

c0se -sin0 
sin e cos 8 > 

and we have 

dg = &de, 
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since the metric chosen on S 0 (2) is 

and 

(H, gH’g_‘) = cos2C?(hth; + h2h!-J + sin2 Q(hth; + h2h{) 

= :(h + h2)<f( + h;) + i(h2 - hl)(h; - h\)cos28. 

Therefore 

--i&K gff’g-‘1 
SO(2) 

= exp + h2)& + h;) 

2n 

-&-(h2 - h)(h; - h;) cos2B &de 

0 

where Jo is the zero order Bessel function. N = dim(V) being equal to 3, we get the 
following expression of the propagator: 

x exp 
( . 

&[(h: + h; + h;’ + h;2)COSht - (h2 + hl)(h; + hi)] 
1 

x Jo 
w2 - h)($ -A’,) 

1 2sinht 

Remark. If the system is reduced to its centre of mass, it is equivalent to a (separable) 
system of two uncoupled particles on a line, of equal masses, independent from one an- 
other, one in the harmonic potential ih2x2, the other in the potential $h2_x2 - 1/8x2. 
Our result for two-particle sytems can thus be deduced from the results of Khandekar and 
Lawande [ 111. The reader can also refer to Schulman’s book [ 181 which gives a list of 
computable propagators. 

5. Stationary phase approximation 

In view of the expression of the propagator found in the case n = 2, which contains a 
Bessel function, the semi-classical approximation of the propagator is not exact for finite 
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times. Yet, it is possible to obtain the asymptotic behaviour of the propagator for short times, 
using the stationary phase method. 

According to this method, 

(2nt)-(li2)dim (so(~)/w s (. exp -& (H, gH’g-‘) @ 
SO(n)IM 

= c 49 exp 
s ( . -;(H, gH’g-9 + O(t), 

> 

the summation being made on all the critical points of 

f : g E SO(n)/M H -(H, gH’g_‘), 

c(g) being equal to 

exp (itsgn Hessif) 1 det Hessif l-‘/2 . 

Here Hessif denotes the Hessian matrix of f at j in a basis of Tg (SO(n)/M) of volume 
1, and sgn its signature, i.e. the difference between the numbers of its positive and negative 
eigenvalues. 

Let H, H’ E A. The critical points of the function f are those for which H is orthogonal 
to the orbit through H’ at gH'g-' , which amounts to gH’g_’ being diagonal. Therefore 
the critical points of g are in a one to one correspondence with the matrices obtained by 
permutation of the diagonal entries of H’. Let 2 be a critical point, H” = gH’g_‘. The 

vectors A,, . g (p < q) form an orthonormal basis of T,SO(n) and 

(H, expXgH’g-‘exp(-X)) 

= (H, exp XH”exp(-X)) 

= (H, (I + X + ;X2)H”(Z - X + ;X2)) + o(1jXl12) 

= (H, H” + [X, H”] + ;(X2H” + H”X2) - XH”X) + o(~~X~~~) 

= (H, H”) + ;(H, X2H” + H”X2 - 2XH”X) + o(~~X~~~). 

IfX=C p<q +l‘%4’ we get 

-(H, expXgH’g_’ exp(-X)) 

= -(H, H”) + ; x(hy - h,)(h; - h;)s;,. 
PC9 

The Hessian matrix of f at j is thus diagonal. The absolute value of its determinant is 
6(H)J(H’). Its signature is in(n - 1) - 21(a), where 0 E S,, is the permutation of the 
set {l, . . , n) corresponding to g and Z(a) = Card {(p, q) I p -c q, a(p) > a(q)} is the 
number of inversions in D . 
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Thus 

X c e-i(n/2)l(o),-(ilt)(hlhb~,)+..,+h,h’ 
m) + O(t) . 

UES, I 

Theorem 2. The short time approximation of the propagator is given by 

kt(~, H’) = (27tt)-n/2e-inn/4 

[ 

C ,-~(~/2)~(~),(i/2~)ll~-~~‘01* + qt) , 

O&S, 1 

where I (a) = I (a-‘) is the number of infmite potential wells hi = hj across the segment 
[H, d(H’)]. 

The contribution of H’ to the propagator for short times can be interpreted as resulting 
of broken straight lines from H’ to H, with a phase shift of -4~ at each “reflexion” on a 
potential well, i.e. at each collision between two particles. 

Remark. By computing as in the preceding section the propagator for functions on u(n) 
invariants for the adjoint action of U(n), we can get the Fourier transform of the delta 
distribution of an adjoint orbit, a result first proved by Harish Chandra (cf. [8]). 

As a manifold transversal to the orbits, we chose the set A of diagonal purely imaginary 
matrices whose diagonal entries: iht , . . . , ih, verify hl < h2 < . . . < h,. The adjoint 
orbits are diffeomorphic to U(n)/M, M being the isotropy subgroup of purely imaginary 
diagonal matrices, i.e. the set of diagonal matrices in U(n). The radial part AL of the 
Laplace-Beltrami operator L on the Euclidean space u(n) displays 

where 6 = nr4[(hl - h,)2 is the density function, i.e. dX = 6 . dht ’ . . dh, dg, dg 
denoting the Riemannian measure on U(n) / M. 

The propagator of Shrodinger equation i(a/a t) = -i L for a free particle on u(n) is 

&(X, X’) = e-iNlr/4 
1 

(2n t)N/2 
,iW(X,X’) 

where 

W(X, X’) = ;(llxll2 + IIX’]]2 -2(X, X’)) 

and N = dim u(n) = n2, 
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Let h denote the set of diagonal purely imaginary matrices. If a family of radial functions 
(~++~)~?a in L2(u(n)) verifies Schrodinger equation i(a/at) = -iL, the family of func- 
tions (ft)rz~ in L’(h), skew-symmetric in the variables ht, . . . , An, defined by fr(H) = 

s”21Clt(H) = IJ<#l -h,)llrr(H) verifies the equation i(a/at) = -i C, a2/ahz. Hence 
fr is propagated by the kernel 

1 
kt(H, ff’) = c-inn/4- 

(2nt)“i2 exp (’ 
~(llHl12 + IW’l12 - 2w, H’)) 

I 
and its restriction to A by 

and also by 

61’2(H)61’2(H’) s K,(H, gH’g-‘) dg. 

U(n)lM 

We deduce Harish Chandra’s formula for the Fourier transform of the delta distribution 
of an adjoint orbit 

.I exp(-i(H, gH’g_‘)) dg 

ein(n-l)7r/4(2ny(n-l)/2 

= n,<l[(hl _ h,)(h; _ hi), D; E(a)exp(-i(H’ a(H’)))’ 
n 

which can be interpreted as a case of exactitude of the stationary phase approximation [7]. 

6. Other interaction constants 

Here we investigate two different schemes to obtain other interaction constants than - $. 

6.1. Eigenfinctions of orbital Laplace-Beltrami operators 

Using the separation of variables, we consider functions which are the product of a radial 
function and a fixed angular function whose restriction to each orbit is an eigenfunction of 
the orbital Laplace-Beltrami operator. 

For this purpose, we need the expression of the Laplace-Beltrami operator Lv with 
respect to the coordinates (H, 2) E A x SO(n)/M. 

L v splits into a transversal and an orbital part (cf. [9]), which means that at each point 
X of V, for any function $ E C”(V), 

(Lv@)(X) = ((LVh@r)(X) + wox+px)m~ 
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where (L V) T is the transversal part of L v : 

(Wvh@)W-‘) = [(ALvW’ E A H IlrW’g-‘MW, 

and Lox is the Laplace-Beltrami operator on the orbit OX through X. 
Let H E A. Let us denote by A,, the infinitesimal rotations defined in Section 2, as well 

as the vector fields that they induce on OH. The vectors B,, = A,,/(h, - hp), p < q, 

form at each point of the orbit an orthonormal basis of the tangent space. For every function 
f defined on OH, the gradient of f is given by grad(f) = CPC4 ( BP4 f) B,, . Furthermore, 
the metric of the orbit and therefore its volume form being invariant under the action of 
SO(n), the vector fields B,, are divergence free. Hence 

Lox.f=divgradf = ~l(graW,,f), BP,) + (BP4f)WBP4)1 
P'4 

=CBZqf =z (A4 ‘, 
PC4 P 

)24d 
Let c be a function on SO(n)/M inducing on each orbit an eigenfunction of the orbital 

Laplace-Beltrami operator. Functions of the form @(gHg-‘) = f(H)c(g) conserve this 
form through their time evolution with respect to the harmonic oscillator problem. 

The orbital Laplace-Beltrami operator is a linear combination of the squares of the 
infinitesimal rotations A,, , p < q, in the coordinates planes. Therefore, if c(g) is an 
eigenfunction of the square of the infinitesimal rotation in each coordinates plane, then it 
will satisfy to the condition above . 

Let x be a representation of SO(n) on some vector space E. If u E E is an eigenvector 
for each operator (dx A,,)*, and q any linear form on E, then the representation coef- 
ficient c(g) = q(x(g)u) is also an eigenvector of the Az,‘s with the same eigenvalues. 
Indeed 

A;,c(g) = x 
dt* lt=o 

c(g exp(tApq)) 

d* 
=- 

dt* ItTo 
~(x(gexp(tA,,)u) 

2 
=rl(xk)(dxApq) u). 

Let us consider the irreducible representation x of SO(n) on the space E of har- 
monic polynomials of n indeterminates xl, . . . , xn homogeneous of degree n (cf. [21]). 
We have 

dx(A,,)=L 
1/2 

x a-x -!- 
q axp p ax4 

. 

Note that the harmonic monomial u = ~1x2 . e - x, yields 

dx(Apqb = %x1 Ap ,” . ..x *..x . ..x. -q...x 2 .. 

2/2 
P 
. ..x 

4 
. ..&) 
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(the symbol A designing an omitted factor) and 

(dx(A,,))2u = -2~. 

Furthermore u is left invariant by the rotations of angle rr in the coordinates planes (which 
amount to turning two of the coordinates xP and xq into their opposite), thus the coefficients 
c(g) = n(x (g)u) define functions c(g) on the quotient space SO (n)/M and therefore on 
the orbits. For instance, if q is the component on the vector xl x2 . . . xn of the canonical basis 
ofE,c(& = c o&s, glc(l)g20(2) . . . gnocn) where g = ((gPg)) E SO(n) is arepresentative 
of g. These functions are eigenfunctions, and the associated eigenvalue on the orbit 0~ is 

-2x l 
p<4 (kj - Q2. 

Remark. These functions are exceptional. The author has verified that in the case n = 3, 
there is no other non-proportional function which is an eigenfunction for each (dxA,,)2. 

Therefore, for II/ : gHg_’ H f(H)c(g), 

Hence we have: 

Theorem 3. The propagator of the Hamilton operator 

is 

-n(n+l)/4 
kt(H, H’) = & (-0 

sin ht (n(n+l)/2)cute-in(n+l)n/8 zn_ 

I I h 

x 8”2(H)61’2(H’) 

--_(IIHl12 + IIH’l12) 

s (’ 
exp --& (HP gH’g-‘k(g) dg. 

SO(n) 

In the exceptional case n = 2, all the irreducible representations of SO(2) are unidi- 
mensional and each vector of the representation line is obviously an eigenvector for A 12 = 
(l/&( d/ de). If c(&) = e2in0, gQ designing the rotation of angle 0 and n a fixed integer 
(c(g) is not single-valued for n half integer), A&c = -n2c. 

Hence we can obtain all the interaction constants of the form n2 - i, n E N. The integral 
in the propagator can be expressed using a Bessel function of order n: 
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1 = _jfft-ne-i3n/4 1 CT/! lw312 Jm 
2& 

x exp 
( 

&[(h: + hs + h’: + hF)cosht - (h2 + h~)(h~ + hi)] 
I 

Jll 
( 

5-32 - hw4 - h;) 
> 

. 

6.2. Other symmetric spaces 

Olshaneski and Perelomov remarked in [ 151 that the radial parts of the Laplace-Beltrami 
operator of symmetric spaces SU(2n)/Sp(n) and &j/F4 are conjugated to Sutherland 
systems with interaction constants 2 and 12. The corresponding Calogero systems can 
be obtained by letting the curvature go to zero with homothetical transformations and by 
making a central extension to get rid of the constraint “c h, = 0”. For instance, when the 
interaction constant is 2, we consider the action of Sp(n) by conjugacy on the orthogonal 
complement of sp(n) in u(2n), which is the space of matrices of the form 

(;; -:,). Zt E u(n), 22 complex skew-symmetric. 

7. Energy levels and trace of the propagator 

Let us denote by X = ((X,,)) the generic element of V and set 

ZPP = XPP, IX zpq=fi pq’ P<9. 

The zpq , p 5 q, form a system of orthonormal coordinates on V. 
The one-dimensional harmonic oscillator with Hamilton operator -i (d2/ dx2) + ih2x2 

has eigenfunctions of the form $(x) = cste . e -hx2/2 HP (fix) (where HP denotes the pth 
Hermite polynomial) with eigenvalues (p + i)h (see [12] for instance). The eigenfunctions 
of the harmonic oscillator for which Hamiltonian is 

-;L” + ;,,x,,2 
are thus the functions of the form 

v+(X) = exp (-A?) ( c 
(apq)p~q EN”(“+‘)‘2, 

ca,,a,2...a,ln g Ha,q(fizpq)r 

c p5q aP4 =r 1 
where the c~~,~,~...~,,, are arbitrary constants. The corresponding energy level is (r + 
N/2)h = [r + n(n + 1)/4]h. 
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The eigenfunctions of the reduced operator are obtained by multiplicating by the square 
root of the density function the restriction to A of the radial functions among the ones above. 

Therefore each eigenfunction of the reduced system is of the form 

where P is a polynomial. 
Furthermore, since the invariant function $(gHg-‘) = exp(-A.1 Hll*/2)P(hl, . . . , h,) 

defined by (p is an eigenfunction of the harmonic oscillator, it is analytic and thus 

for every permutation o E S(n). 
But 

( 

h4U 
. . h a(n) ) 

is conjugated to 

( 

ht 
. . > h, ’ 

hence the left-hand side of the equality above is also equal to exp(-h II H II */2) P (h 1, . . . , 
h,), which proves that the polynomial P is symmetric. 

We will prove that the functions of the form p(H) = Y(H)exp(-h))H)\*/2)P(H), 
where P is a homogeneous symmetric polynomial, provide a basis of L*(A) in which the 
matrix of 6 = -4 1,. a2/ah! + b C,+,. l/(h, - h,)2 + iA2 C,. hz is triangular. The 

exponent a > 0 will depend on the interaction constant b and be equal to $ in the case of 
the reduction of radial functions (b = -l/8). 

We have 

ap -=P(H)exp 
ah, 

ac 
1 

PZr (h, - hp) 
P-ih,P+$ , I 1 

a*q -=S“(H)exp(-AT) 
ah: 

x z (h”y-;)2 + PZr ;,,, (hr - h$hr - hq) r P 3 1 

+ (k’h! - h)P + $ + 2 
1 

a c - 
I Pfr hf. - hP 

’ +2aC- 
&L hr - hP 

(--hh,)P . 1 
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Since 

cc 
h, n(n - 1) ----=- 

r p#r hr - 4 2 

and 

c 
1 

pfr,qir p+4 (h, - h,)(h, - h4) = ’ 

(cf. Section 3), 

1 
X c a2p +c -- - 

2 r ah? r 
Ah,.-ax& 

Pfr r 
g 

i- 

( n(n - 1) 
+ a- 

2 
+; 

> I 
AP , 

where a > 0 is chosen so that i (a2 - a) is equal to the interaction constant b. 
If P is homogeneous of degree d, then Euler formula C, h, (a P/ah,) = d s P yields: 

@p = S’(H) exp 

1 
c 

a2p n(n - 1) 
X -- ---_a 

ah; 
. 

2 2 
+;+d 

r 
) hP 1 

If moreover P is symmetric, then 8 P/ah, - 8 P/ah, is zero when h, = h, and thus is 
divisible by (h, - hp). 

Therefore, we obtain 

@P = 
n(an+l-a) 

2 
+d)@+Sa(H)exp(-hq) Q, 

where Q is a symmetric polynomial of degree at most d - 2. 
Hence we have: 

Theorem 4. Each eigenfunction corresponds to a symmetric polynomial, the energy levels 
are i (n (an + 1 - a) + d)h (d E N), with multiplicity equal to the dimension of the space 
of homogeneous symmetric polynomials of n indeterminates of degree d. This dimension 
isthecardinaloftheset{(al,...,a,) E FVlal 5 a2 5 ... 5 a,, al +...+a, = 

dJ. 

We refer the reader to [ 161 for an anologue of this theorem for more general cases. 
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Hence the trace of the propagation operator has a very simple closed form expression: 

tr(e-‘@) = c exp(-St) (Im t < 0) 
E energy level 

( .n(an+ 1 -u)ht O” 
= exp -1 

2 > c exp(-ialht) 
al=0 

CQ cc 

X c exp(-i&t) . . . c exp(-iu,ht). 
LZ2=*1 a,=CZ,_, 

But 

2 exp(-iu&) = exp(-iu,_lht) 5 exp(-iu;ht) 
*,=ll,_l a;=0 

= exp(-iu,_lAt) 
1 

1 - exp( -iht) 

= exp(-iu,_lht) 
exp(iht/2) 

2i sin(ht/2) ’ 

Thus the trace of the propagation operator tr (e-“@) is equal to 

( . n(un + 1 - u)At 
exp -1 

exp(iht/2) O” 

2 > c 2i sin(ht/2) a,=0 
exp(-iulht) 

00 cc 

X c exp(-i&t) f. + c exp(-2iu,_lht) 
lQ=lZl a,_,=cl,_2 ( . n(un + 1 - u)ht 
= exp -1 

exp(iht/2) exp(iht) exp(i3ht/2) 

2 > 2i sin(ht/2) 2i sin(k) 2i sin(3ht/2) 
exp(inkt/2) 

’ * * ’ 2i sin(nht/2) ’ 

Theorem 5. The truce of the propagation operator tr (e-“@) is equal to 

exp(i(l - 2u)n(n - i)a.t/4) 
(2i)n sin(ht/2) sin(At) sin(3ht/2) . . . sin(nkt/2) * 

Besides, the trace can also be expressed with respect to the propagator: 

tr(e-@) = 1 k,(H, H) dH. 

A 

In the case of two-particle systems, we obtain known identities involving Bessel functions, 
connected with the formula (cf. [22]) 
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+@Z s e -““J”(h) dw = ‘~I?‘“. 
” 

0 

More complex identities may be obtained by considering systems with three particles or 

8. Bosons and fermions 

The propagators computed so far allow to describe the motion of n particles whichever 
statistic (bosonic or fermionic) the particles obey. 

The wave function ft at time t of such a system is not defined on A, but on the space of 
diagonal matrices with distinct entries: 

A = u a(A), 
O&s, 

where a permutation o E S, of { 1,2, . . . , n) acts on the space of diagonal matrices by 

_ii h2 ... ,.i = i”; hu-‘(2) ... hD_,J. 

But 5 is determined by its restriction to ff at A: 

f,(c(H)) = f,(H) for bosons, 

ff(~(H)) = 6(0)ft(H) for fermions, 

HEA, a~&, 

c(u) denotes the signature of 0. 
In both cases, the propagation of f; is given by the one of ft : the solution of the 

Schrodinger equation 

ig=-iaft+ aC ( ’ 
/_Lq (4 - u* +(p:, A, p 1 

with initial wave function, &, is given by 

J(c(H)) = 
s 

kr(H, H’)fo(H’) dH’ (for bosons), 

A 

or 

E(C) s kt(H, H’)fo(H’) dH’ (for fermions) 

A 
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